Помножувач частоти великої кратності міліметрового діапазону з малими втратами

температур, різноманітному для кожного з вищезгаданих вихідних

з'єднань. Швидкість епітаксіального нарощування сильно залежить від

температури і тому надзвичайно важливе точне завдання температури й

однорідність її розподілу по всій площі пластини. Велике значення

також має точна підтримка заданої швидкості потоків газів, що беруть

участь у реакції. Для введення легуючої домішки в плівку, що

вирощується, використовують декілька методів, одним із них є

легування з газів і парів з'єднань, що містять домішки. Введення

домішок до складу газоподібних речовин провадитися з використанням

фосфіна РН3, арсіна АsH3, діборана В2Н6 і деяких інших газів, що

добавляються у водень або інертні гази в концентраціях від 10-4 до

1%, і ця низька концентрація повинна добре підтримуватися. Після

виготовлення напівпровідникової структури здійснюють металізацію.

При виборі металізованого покриття істотні два основних

поняття. По-перше, використовуваний метал (або метали) повинний

утворювати омічний контакт із дуже малим перехідним опором. По-друге,

металізація повинна призводити до створення надійного приладу. При

виготовленні НВЧ-приладів застосовують комбінації типу Сг-Аu або Тi-

Аu. Обидві комбінації мають хорошу адгезію, забезпечують дуже низькі

контактні опори і до них легко приєднати контакти. Проте при

підвищених температурах спостерігається перенос матеріалу, що

призводить до катастрофічних результатів. Один із методів рішення

проблем, пов'язаних із взаємною дифузією металів, заснований на

застосуванні бар'єрного металу, що розділяє прошарок власне-

контактного металу від зовнішнього прошарку з інертного металу -

золота. Відмінними бар'єрами, що розділяють метали один від одного, є

паладій і платина.

Виготовлений діод монтують у НВЧ - корпус. Корпус забезпечує

захист кристала від впливів навколишнього середовища. Основні вимоги,

якою повинна задовольняти конструкція корпуса, полягає в забезпеченні

малих значень паразитних параметрів СК і Lк і малого теплового опору.

Перша вимога стає вирішальною у більш високочастотному діапазоні,

коли значення паразитної ємності має порядок активної області діодної

структури, друга вимога грає основну роль у більш низькочастотному

діапазоні при роботі діода з високими рівнями потужності. Звичайно

застосовують металокерамічні корпуса з використанням чопа з

високоглинистої кераміки з ? = 9-10, що забезпечують жорсткі вимоги

до механічної і кліматичної стійкості. Типова структура корпуса

показана на малюнку 2.2.

[pic]

Мал.2.2. Металокерамічний корпус діоду:

1 - тримач, 2 - шайба припою, 3 - втулка, 4 - шайба припою, 5 -

кришка, 6 - фланець, 7 - кристал.

Одночасне зниження L і С досягається тільки при зменшенні

висоти і діаметра ізоляційного чопа. Мінімальні значення L і С у

корпусах такого типу складає відповідно 0,15 нГн і 0,25пФ при

найменших габаритах.

Зниження теплового опору досягається використанням у якості

кристалотримача матеріалу з високою теплопровідністю, зокрема міді.

Одержання узгодженого прошарку кераміки з міддю досягається при

використанні компенсуючих каблучок з ковара. Приєднання кристалу до

тримача здійснюється або паянням, або за рахунок утворення зв’язку

напівпровідника з золотим покриттям тримача. Останній засіб знижує

тепловий опір конструкції через відсутність припою, що має гіршу

теплопровідність у порівнянні з іншими елементами конструкції.

Для створення між контактними площадками кристалу і корпусу

надійного при різноманітних умовах експлуатації електричного контакту

використовуються тонкі золоті дротики, що приєднуються за допомогою

мікроконтактного зварювання. Після складання, корпус перевіряють на

герметичність. Корпус рахується герметичним при натіканні гелію не

більш [pic]

При використанні ЛПД в помножувачі частоти корпус виконує

також роль коливального системи з L і С. Ця система на принциповій

електричній схемі являє собою два контури: настроєний на вихідну

частоту і настроєний на субгармоніку вхідної частоти.

2.3. Розрахунок помножувача частоти на ЛПД

У даному розділі проведені теоретичні дослідження роботи

помножувача частоти високої кратності міліметрового діапазону.

Електрична принципова схема помножувача частоти на ЛПД подана на

мал.2.3. зворотна напруга діода задається постійною напругою V0; на

постійну напругу накладається змінний сигнал V1sin((ВХt) , у

результаті на невеличкій частині періоду НЧ-сигналу напруга,

прикладена до діода, перевищує пробивну й утвориться лавина, що

призводить до появи імпульсу струму через діод, що містить множину

гармонік. Для одержання більш гострого імпульсу на змінну напругу

накладається напруга другої гармоніки, відповідно зфазована.

Потужність другої гармоніки можна одержати шляхом відбитття на

кристал помноженого в два рази змінного сигналу. На схемі потужність

другої гармоніки подана джерелом змінного сигналу V2sin(2(ВХt+().

Коливальний контур низької частоти визначає посилення вхідного

сигналу: тому що добротність вихідного контуру мала, то в ньому

присутнє не тільки n(Вх , але і (n+1)(Вх і (n-1)(Вх: і внаслідок

сильної нелінійності процесу з'являється негативна параметрична

провідність на різницевій частоті (Вх. У вихідному ланцюзі вводитися

коливальний контур, настроєний на частоту вдвічі нижче вихідний.

Спочатку з'являється від’ємна провідність на цій субгармоніці, а

потім, внаслідок нелінійних властивостей, і на вихідній частоті,

завдяки чому відбувається підсилення вихідного сигналу.

Дані дослідження будуть проводитися на основі локально-

польової моделі ЛПД у режимі заданої напруги методом математичного

моделювання на ЕОМ.

RS VD

V2

V1

L3 C3 R3

L2 C2 R2

V0

L1 C1 R1

Мал. 2.3.Схема електрична принципова помножувача частоти.

Основні рівняння, що описують ЛПД , мають вид:

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

де j1 - густина потоку дірок;

j2 - густина потоку електронів;

U1 - швидкість дірок;

U2 - швидкість електронів;

gf -швидкість генерації електронно-дірочних пар, обумовлена

електричним полем;

[pic] - густина рухливих зарядів дірок і електронів ;

[pic] - густина акцепторів і донорів;

Е - напруженість електричного поля;

Vд - напруга, прикладена безпосередньо до активного прошарку

кристалу;

iд – повний струм через діод;

V – напруга, прикладена до діода;

Rs - омічний опір діода;

D1, D2 - коефіцієнти дифузії для дірок і електронів;

L - довжина кристала;

[pic]- рухливість дірок і електронів ;

Uн1, Uн2 - швидкість насичення дірок і електронів ;

iki - находяться з рішення рівнянь коливальних контурів, що

мають вид:

[pic]

i=1, 2, 3.

Граничні умови мають вид:

[pic]

[pic]

[pic]

[pic]

[pic]

Початкові умови :

?[pic]Nа;

?[pic]Nд;

Vд=V0;

Iki=0;

[pic]

де Nа, Nд - концентрація акцепторів і донорів

? - коефіцієнт, що дорівнює 1.

У даній задачі проводитися розкладання повного струму через

діод у ряд Фур'є, що дозволяє точно визначити потужність діода

змінного сигналу, що визначається підвідною потужністю і

параметричним посиленням вхідного сигналу. Крім того для визначення

вихідної потужності проводитися розкладання струму в вихідному

навантаженні в ряд Фур'є. Це дозволяє визначити потужність усіх

гармонійних складових у спектрі вихідного сигналу. Слід зазначити, що

для ЛПД вірніше було б задавати струм через діод і знаходити при

цьому напругу на клемах діоду. Проте, як показали попередні

розрахунки, у цьому випадку виникають істотні складності при

обчислювальні. Тому була обрана схема розрахунку заданої напруги.

Запис вихідних рівнянь припускає такі основні нормування:

[pic]

де V1, V2, E1, t, n, p - ненормовані значення швидкості,

напруженості електричного поля, часу і густини рухливих зарядів

відповідно, причому передбачається [pic]що дозволяє виключити

коефіцієнт в рівнянні Пуассона. У розрахунках задаються такі

параметри:

Vн1=[pic] см/с;

Vн2=[pic] см/с;

Оскільки невідомі достатньо достовірні дані про розмір

коефіцієнтів дифузії в сильних полях , то коефіцієнтах дифузії дірок

і електронів можна вважати одинаковими:

D1=15 см2/с;

D2=15 см2/с;

Двопролітні діоди характеризуються великим значенням активної

складової імпедансу і меншим значенням реактивної складової, що

дозволяє працювати при великих значеннях омічного опору контакту і

полегшує узгодження з електродинамічною системою. Пропонувалося, що

легування донорами по всієї довжині однакове, а в р-області легування

акцепторами в два рази більше легування донорами, а на p-n переході

воно стає рівним нулю. Довжина переходу складала чверть довжини

кристала, а p- і n- області рівні між собою. Така структура була

обрана внаслідок того, що контактні розрахунки діодів, у яких

відношення довжин р- і n- областей пропорційно відношенню швидкостей

дірок і електронів, не показали помітного покращення в ККД у

порівнянні з діодами з однаковими довжинами р- і n- областей.

Розрахунки проводилися за допомогою програми, написаної на

мові програмування «Pascal».

У даній роботі розрахунки проводились при таких параметрах:

вхідна частота fВХ=6.5 ГГц, а вихідна частота fВИХ=100 ГГц; довжина

діода L=0.72 мкм; легування акцепторів у лівій половині діода

NA=1.85(1017 см-3 , а легування донорами по всієї довжині кристалу

NД=0.92(1017 см-3; омічний опір контактів діода RS=0.9(10-5 Ом(см2 .

Ми одержали такі значення цих параметрів, при яких спостерігається

помноження: V0=24 В, V1=12 В, V2=6 В; L1=6.9(10-17 Гн(см2, С1=3.36(10-

8 Ф/см2, R1=2.35(10-4 Ом(см2 (контур, настроєний на вихідну частоту);

L2=8.25(10-17 Гн(см2, С2=6.3(10-8 Ф/см2, R2=2.65(10-3 Ом(см2 (контур,

настроєний на другу субгармоніку вихідної частоти); L3=1.57(10-15

Гн(см2, С3=3.8(10-7 Ф/см2, R3=5.9(10-3 Ом(см2 (контур, настроєний на

вхідну частоту).

При даних параметрах ми одержали наступні результати: середній

струм через діод складає 7.4(104 А/см2, потужність змінного сигналу

дорівнює 105 Вт/см2, потужність 15-ой гармоніки в навантаженні

вихідного контуру дорівнює 1.9(103 Вт/см2. Цим даним відповідають

графіки, приведені на мал.2.4. Втрати потужності на помноження

складають 19 дБ. При подальшому зменшенні R1 втрати потужності на

помноження зростають і при R1=4.72(10-5 Ом(см2 вони складають 24 дБ.

Графіки преведені на мал.2.5. Можна сказати, що при даному значенні

R1 помноження ще не відбувається. При збільшенні R1 відбувається

змикання, тобто ми маємо ситуацію коли коливання у вихідному контурі

ще не загаснули, а вже надходить наступний імпульс струму. У цьому

випадку немає синхронізації вихідного сигналу вхідним відносно

низькочастотного сигналу. Це відображається на мал.2.6.

Планується дослідження залежностей параметрів помножувача в

залежності від R2 та R3.

Висновки

У ході передипломної практики було проведено математичне

моделювання роботи помножувача частоти великої кратності на основі

ЛПД із метою одержання високостабільних коливань у короткохвильовій

частині міліметрового діапазону хвиль. Досліджувався вплив зовнішньої

електро-динамічної системи на вихідні характеристики помножувача.

Попередні розрахунки показали можливість використання ЛПД у

якості помножувача частоти великої кратності, що дозволяє одержати,

практично зі зберіганням спектру вхідного сигналу, помноження в 15

разів з втратами потужності порядку 19 дБ.

Отримано помноження частоти в 15 разів ([pic]) і при цьому

втрати на помноження складають 24 дБ при [pic], де [pic] - опір у

вихідному контурі. При збільшенні до [pic] мінімальні втрати на

помноження зменшуються і складають 19 дБ.

При подальшому збільшенні R1 відбувається змикання, тобто ми

маємо ситуацію коли коливання у вихідному контурі ще не згаснули, а

вже надходить наступний імпульс струму. У цьому випадку немає

синхронізації вихідного сигналу вхідним відносно низькочастотного

сигналу.

Список літератури

1.Пильдон В.И. Полупроводниковые умножительные диоды . - М. : Радио и

связь, 1981.-136.,ил.

2.Красноголовый Б.Н. Плавский Н.Г. Варакторные умножители частоты. –

Минск: Изд-во Белорус. ун-та им. В.И.Ленина, 1979, с. 287.

3.Давыдова Н.С. Данюшевский Ю.З. Диодные генераторы и усилители

СВЧ . -М. : Радио и связь, 1986. - 184 с., ил.

4.Полупроводниковые приборы в схемах СВЧ ( Под ред. М. Хауэса,

Д. Моргана. - М. : Мир, 1979. – 448 с.

5.Белоусов Н. П. Гудзь И. А. Новожилов В. В. Чайка В. Е. Исследование

характеристик кремниевых ЛПД в коротковолновой части миллиметрового

диапазона – Электронная техника, Серия 1, Электроника СВЧ, Выпуск

2, 1979г.

Додаток

Мал. 2.4.

Мал. 2.5.

Мал. 2.6.

-----------------------

Помножувачі частоти на напівпровідникових приладах

NR-типу

NC-типу

ДПЧ

ТПЧ

ВПЧ

На ДНЗ та ЕЗП -діодах

ТППЧ

(2.10)

(2.9)

(2.8)

(2.7)

(2.6)

(2.5)

(2.4)

(2.3)

(2.2)

(2.1)

(2.12)

(2.11)

(2.18)

(2.17)

(2.16)

(2.15)

(2.14)

(2.13)

(2.19)

(2.20)

(2.21)

(2.22)

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

Страницы: 1, 2, 3



Реклама
В соцсетях
скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты