записывают несколько иначе, рассматривая силу, действующую на m2 со стороны
m1:
[pic]r12 ,
( 2-7 )
откуда видно направление силы ( она направлена вдоль прямой, соединяющей
взаимодействующие массы). Модуль силы притяжения P тела массы m к Земле ,
которую называют силой тяжести можно записать так:
[pic]
( 2-8 )
где величина [pic] - ускорение свободного падения, МЗ- масса Земли, а RЗ -
радиус Земли. Из выражения g видно, что оно не зависит от массы выбранного
тела и поэтому одинаково для всех тел в определенной точке земной
поверхности.
| N | Важно подчеркнуть различие двух понятий - силы |
| |тяжести и веса тела: первая сила существует всегда, |
|а |когда есть притягивающая масса МЗ, тогда как вторая, |
| |представляющая меру воздействия тела на подставку или |
|Р |нить подвеса, вообще говоря может изменяться. Для |
|Рис.7. К определению |пояснения сказанного полезно рассмотреть показания |
|веса тела. |весов, на которых стоит гиря. В неподвижном состоянии |
| |на |
| |гирю действует две силы - сила тяжести Р и сила |
| |реакции опоры ( весов )N, причем Р - N = 0. Если |
| |весы движутся |
вниз с ускорением а (см рис.7), то уравнение второго закона Ньютона,
записанное в неподвижной системе координат[6], имеет вид:
ma = P - N ,
( 2-9 )
откуда N = P - ma = mg - ma = m( g - a ).
( 2-10 )
По третьему закону Ньютона сила реакции опоры N равна и противоположно
направлена силе давления гири на весы [pic], т.е. весу гири ( N =
[pic]). Поэтому вес
гири [pic]= m (g - a).
( 2-11 ) . Очевидно, что при а = g
[pic]= 0, т.е. все свободно падающие тела ничего не весят. Сила тяжести на
поверхности Земли не является постоянной по двум причинам: во-первых,
Земля, как известно не является идеальным шаром ( она сплюснута на
| |полюсах так, что на полюсах g больше, чем на |
| |экваторе); во-вторых, вследствие суточного вращения |
| |Земли, на все тела на ее поверхности (за исключением |
|r |географических полюсов) действует центростремительное|
| |ускорение aц = [pic]соs(, направленное в ту же |
|( |сторону, что и g. Поэтому (ср. с рис.7) вес тел будет|
|R |меньше там, где радиус вращения больше, т.е. на |
| |экваторе тела имеют наименьший вес. |
| |Кроме гравитационных сил в механике рассматриваются |
| |упругие силы и силы трения, которые обусловле- |
| | |
|Рис.8. Изменение ра | |
|диуса вращения. | |
ны электрическими силами. Силы упругости обусловлены деформациями.
Деформации связаны с изменением взаимного расположения молекул, образующих
рассматриваемое тело, причем силы возникают лишь тогда, когда деформации
носят упругий характер. В этом случае справедлив закон Гука так, что
[pic],
( 2-12 ) д
где ( обозначает величину упругой деформации, а к - коэффициент
пропорциональности, зависимый от свойств деформируемого тела и вида
деформации. Частным примером проявления упругих сил служат силы
реакции опор, направление которых считается всегда нормальным (
перпендикулярным ) к деформируемой поверхности. Другим примером действия
упругих сил могут служить так называемые силы связи ( силы натяжения ).
Рассмотрение сил трения можно ограничить двумя примерами : силами
сухого и силами вязкого трения[7]. Сила сухого трения скольжения известна
из школьного курса физики: Fтр = -( N, где ( - коэффициент трения,
характеризующий свойства взаимодействующих поверхностей, а N - так
называемая сила нормального давления . В отличие от сил вязкого трения эта
сила не зависит от скорости движения тела. Сила вязкого трения, напротив,
зависит от величины скорости, причем степень зависимости меняется по мере
возрастания скорости. Для сравнительно небольших скоростей она может быть
представлена в таком виде:
Fвяз = - bv =
-[pic]. ( 2-13 )
Величина коэффициента b зависит как от свойств самого тела, которое
движется в вязкой среде, так и от свойств среды. Иногда эту силу трения
удобнее представлять в таком виде:
Fвяз = - (S[pic],
( 2-14 )
где S - площадь соприкосновения тела со средой, ( - коэффициент внутреннего
трения среды, а величина производной, входящей в выражение для силы, носит
название градиента скорости, описывающего быстроту изменения скорости слоев
среды, увлекаемых телом, в направлении, перпендикулярном направлению
скорости тела.
Практически важное значение имеет сила трения покоя , возникающая
между соприкасающимися телами. Максимальную величину этой силы обычно
оценивают по формуле для силы трения скольжения, хотя в действительности
они несколько отличаются друг от друга.
( 2- 5. Динамика вращательного движения материальной
точки.
| N |Специфика такого движения состоит в том, что для его |
|v |описания приходится прибегать к некоторым ухищрениям для |
|mg |выбора системы отсчета, в которых можно записать уравнение|
|r |движения. Если выбирать обычную неподвижную систему |
| |координат, то направления скоростей и ускорения точки |
| |будут ежесекундно изменяться относительно координатных |
|Рис.9. Силы при |осей, что не совсем удобно. Поэтому оперируют с так |
|вращательном |называемой следящей системой координат, т.е. с такой |
|движении. |системой, |
| |начало которой неподвижно и совпадает в выбранный момент |
| |времени с движущейся материальной точкой, а направ- |
ления ее осей совпадает с направлением скорости тела в этот момент времени
и с
направлением радиуса вращения, проведенного в точку, где расположено тело в
этот же момент времени. Важно отметить, что выбранная таким образом
система
отсчета является неподвижной относительно инерциальной системы отсчета (на-
пример, Земли), и в ней справедливы законы Ньютона.
Рассмотрим в качестве примера движение автомашины по выпуклому мосту,
радиус которого r (см. рис.9) .Направим одну из осей следящей системы
координат к центру моста, а другую - вдоль направления скорости v.
Уравнение движения в этом случае имеет вид ( в проекции на вертикальную
ось):
maц = mg - N,
( 2-15 )
где через N обозначена сила реакции моста, а mg - сила тяжести. Решая это
уравнение относительно N, получаем :
N = mg - maц = m(g
-[pic]), ( 2-16 )
откуда следует, что при [pic] = g сила реакции моста будет равна 0 . Но
это означает, что автомашина в этот момент времени не оказывает никакого
давления на мост, т.е. она находится в состоянии невесомости.
Лекция 3 Динамика системы
материальных точек.
( 3 - 1. Центр масс системы материальных
точек.
| Y |Центром масс двух материальных точек А и В с массами m1 и|
| |m2 соответственно называется точка С, лежащая на отрезке, |
|m1 |соединяющем А и В, на расстояниях l1 и l2 от А и В, |
| |обратно пропорциональных массам точек (см. рис.10.), т.е. |
|А ( |[pic] . ( 3-1 ) |
| |Если положения точек А и В задаются радиус-векторами r1 и |
|r1= |r2 , то положение центра масс определяется радиусом - |
|l1 ( |вектором R. Из рис.10 следует, что |
|R l2 |R = r1 + l1 и R = r2 + l2 , ( |
|( В |3-2 ) |
| | |
|r2 m2 | |
| | |
|X | |
| | |
|Рис.10. К опреде- | |
|лению центра | |
| | |
|масс. | |
Умножая первое из этих уравнений на m1, а второе - на m2 и складывая их,
получим:
[pic]. ( 3-3 )
Из рис.10 и равенства ( 3-1 ) следует, что m2l2 = - m1l1. С учетом
этого соотношения из выражения ( 3-3 ) можно определить значение радиуса -
вектора R:
[pic] .
( 3-4 )
Обобщая это выражение для произвольного числа материальных точек, получим:
[pic] ,
( 3-5 )
где [pic]= М - полная масса системы точек.