Определение коэффициента поверхностного натяжения методом компенсации давления Лапласа

молекул направлена внутрь жидкости (рис. 19). Поэтому для перехода молекулы

из внутренней части жидкости на её поверхность требуется совершить работу,

в результате свободная энергия поверхности возрастает. Свободную

поверхностную энергию, приходящуюся на единицу поверхности жидкости,

называют коэффициентом поверхностного натяжения:

[pic], (1)

где А – работа, которую нужно совершить, чтобы площадь поверхности

увеличить на S. В системе СИ коэффициент поверхностного натяжения (

измеряется в Дж/м2.

В положении равновесия свободная энергия системы минимальна, поэтому

жидкость, предоставленная самой себе, стремится сократить свою поверхность.

Мысленно ограничим какой-либо участок поверхностного слоя замкнутым

контуром. В нём действуют силы, называемые силами поверхностного натяжения,

направленные по касательной к поверхности перпендикулярно к участку

контура, на который они действуют. Коэффициент поверхностного натяжения (

можно определить и как силу, приходящуюся на единицу длины контура,

ограничивающего поверхность:

[pic]. (2)

Единица его измерения в системе СИ: 1Н/м=1 Дж/м2.

Коэффициент поверхностного натяжения зависит от химического состава

жидкости, среды, с которой она граничит, температуры. С ростом температуры

( уменьшается и при критической температуре обращается в нуль.

В зависимости от силы взаимодействия молекул жидкости с частицами

твёрдого тела, соприкасающегося с ней, возможно смачивание ил несмачивание

жидкостью твёрдого тела. В обоих случаях поверхность жидкости вблизи

границы с твёрдым телом искривляется. Такого рода кривую поверхность

называют мениском.

Для характеристики мениска вводят краевой угол ( (рис 20) между

поверхностью стенки и мениском с вершиной в точке их пересечения. Если

((900, то говорят, что жидкость смачивает стенку, если ((900 – не

смачивает. Появление мениска вызвано тем, что молекулы жидкости,

находящиеся вблизи стенки, взаимодействуют с частицами твёрдого тела.

Искривлённая поверхность оказывают на жидкость дополнительное

(лапласово) давление, действующее в направлении на центр кривизны

поверхности. Рассмотрим сферическую каплю жидкости радиуса r. Её

поверхность, стремясь сократиться оказывает на жидкость добавочное давление

рл. при уменьшении площади поверхности капли на dS поверхностные силы

совершают изометрическую работу (А, равную убыли свободной энергии

поверхности: (А=(dS. С другой стороны, (А=рлdV, где dV – изменение объёма

капли. Учитывая [pic] (dV=4(r2dr) и S=4(r2 (dS=8(rdr), получаем

8(r(dr=4(r2pлdr, следовательно:

[pic]. (3)

Капиллярами называют трубки, радиус кривизны мениска жидкости в которых

сравним с радиусом трубки. В них лапласово давление вызывает поднятие

смачивающих и опускание несмачивающих жидкостей. Уровень жидкости в

капилляре изменяется на такую величину h, чтобы гидростатическое давление

p=(gh уравновесило лапласово давление [pic]. Поверхность мениска в

капилляре можно считать частью сферы (рис. 21), поэтому радиус кривизны

мениска r=r0/cos(, где r0 – радиус трубки. Получим, что высота поднятия

жидкости в капилляре:

[pic]. (4)

Измерив высоту h, радиуса капилляра r0(r и зная плотность (, можно

определить коэффициент поверхностного натяжения (. Однако точное измерение

высоты h затруднено. В данной работе необходимо увеличить давление воздуха

в капилляре до тех пор, пока уровни жидкости в капилляре и в сосуде не

сравняются. Это произойдёт, когда давление воздуха над жидкостью сравняется

с лапласовым. Измерив это давление, можно по формуле (3) вычислить

коэффициент ( жидкости.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Оборудование: капилляр, пробирка, сильфон, манометр, микроскоп, панель

с капилляром, резиновая груша, поролоновые подставки, исследуемые жидкости:

вода, раствор поваренной соли, спирт.

Схема экспериментальной установки приведена на рис. 22. Основной её

элемент – капилляр 2, опущенный одним концом в пробирку 1 с исследуемой

жидкостью, которая его смачивает. Поворачивая трёхходовой кран 3, можно

позволить воздуху в капилляре сообщаться либо с атмосферой, либо с

сильфоном 4 и открытым водяным манометром 5. Когда давление воздуха в

капилляре равно атмосферному, исследуемая жидкость в нём поднимается на

некоторую высоту h над поверхностью в пробирке, образуя вогнутый мениск.

Создавая при помощи сильфона 4 над мениском избыточное по сравнению с

атмосферным давление, измеряемое манометром 5, можно добиться того, что

уровни жидкости в капилляре 2 и пробирке 1 сравняются. Тогда лапласово

давление [pic] и давление воздуха над мениском р=(0gH равны, то есть

[pic], (5)

где d – диаметр капилляра, H – разность уровней в коленах манометра, (0 –

плотность манометрической жидкости. Величина [pic] является постоянной для

данной установки, поэтому, вычислив её, можно найти ( по формуле

(=K(H. (6)

ПРОВЕДЕНИЕ ЭКСПЕРИМЕНТА

1. Измерительным микроскопом определите внутренний диаметр капилляра восемь

раз, поворачивая окуляр микроскопа со шкалой.

2. Вычислите постоянную К и её абсолютную погрешность.

3. Возьмите из пробирки с водой капилляр и при помощи резиновой груши

смочите его изнутри примерно до половины, втянув воду из пробирки.

4. Вставьте верхний конец капилляра в резиновую трубку, а другой опустите в

пробирку 1, как показано на рис. 9.4.

5. Поверните кран 3 так, чтобы капилляр сообщался с атмосферой.

6. Соедините краном 3 капилляр с манометром и с помощью сильфона выровняйте

уровни жидкости в пробирке и в капилляре. Отсчитайте разность уровней

жидкости в коленах манометра H.

7. Повторите измерения 10 раз.

8. Вычислите по формуле (6) коэффициент (, найдите его абсолютную и

относительную погрешности.

9. Повторите действия, описанные в пунктах 3-8, для спирта и раствора

поваренной соли. Сравните найденные значения коэффициентов поверхностного

натяжения с табличными.

10. Напишите заключение.

Глава II. Обработка экспериментальных данных

§1. Экспериментальные результаты

После проведения эксперимента получил следующие результаты.

Для начала необходимо было измерить диаметр капилляра, который

использовался в эксперименте. Для этого использовали измерительный

микроскоп. Измерения производились 8 раз, что обеспечивает точность [17].

|№ опыта|1 |2 |3 |4 |5 |6 |7 |8 |среднее |

|d, мм |1 |1,1 |1,1 |1 |1 |1,1 |1,1 |1,1 |1,1 |

В результате получилось, что диаметр капилляра равен:

d=1,1(10-3 м.

Плотность манометрической жидкости мы взяли из табличных данных для

воды при температуре 20 0С. Она оказалась равной:

(0=998,23 кг/м3.

Ускорение свободного падения: g=9,81 м/с2.

Таким образом, мы получили необходимые данные для расчёта коэффициента

К для данного прибора. Он оказался равным:

[pic], (1)

[pic] Н/м2.

Теперь определим абсолютную погрешность измерений диаметра капилляра.

Причём, этот результат необходимо найти в виде среднего значения, так как

были произведены многократные измерения.

|№ |1 |2 |3 |4 |5 |6 |7 |8 |среднее |

|d, мм |1 |1,1 |1,1 |1 |1 |1,1 |1,1 |1,1 |1,1 |

|(d, мм |0,1 |0 |0 |0,1 |0,1 |0 |0 |0 |0,0429 |

Отсюда мы видим, что абсолютная погрешность измерений диаметра

капилляра равна:

(d=4,29(10-5 м.

Далее проводим сам эксперимент. Измерения производим 10 раз.

|№ |H, м |(, Н/м |((, Н/м |

|опыта | | | |

|1 |0,027 |0,07271 |0 |

|2 |0,029 |0,078096 |0,00539 |

|3 |0,025 |0,067324 |0,005386 |

|4 |0,027 |0,07271 |0 |

|5 |0,028 |0,075403 |0,00269 |

|6 |0,027 |0,07271 |0 |

|7 |0,027 |0,07271 |0 |

|8 |0,026 |0,070017 |0,002693 |

|9 |0,027 |0,07271 |0 |

|10 |0,027 |0,07271 |0 |

| |среднее |0,07271 |1,616(10-4 |

Таким образом мы получили абсолютную погрешность измерений:

((=2,78(10-18 Н/м.

Теперь определим относительную погрешность [18].

[pic], [pic] (2)

(=72,71(10-3 Н/м.

Как видно из результата погрешность мала. Использование таких точных

приборов как измерительный микроскоп привели нас к достаточно большой

точности [19].

§2. Методическая разработка лабораторной работы «Измерение коэффициента

поверхностного

натяжения воды»

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Цель: определение коэффициента поверхностного натяжения воды методом

компенсации давления Лапласа.

Оборудование: капилляр, пробирка, сильфон, манометр, микроскоп, панель

с капилляром, резиновая груша, поролоновые подставки, исследуемые жидкости:

вода, раствор поваренной соли, спирт.

Схема экспериментальной установки приведена на рис. 23. Основной её

элемент – капилляр 2, опущенный одним концом в пробирку 1 с исследуемой

жидкостью, которая его смачивает. Поворачивая трёхходовой кран 3, можно

позволить воздуху в капилляре сообщаться либо с атмосферой, либо с

сильфоном 4 и открытым водяным манометром 5. Когда давление воздуха в

капилляре равно атмосферному, исследуемая жидкость в нём поднимается на

некоторую высоту h над поверхностью в пробирке, образуя вогнутый мениск.

Создавая при помощи сильфона 4 над мениском избыточное по сравнению с

атмосферным давление, измеряемое манометром 5, можно добиться того, что

уровни жидкости в капилляре 2 и пробирке 1 сравняются. Тогда лапласово

давление [pic] и давление воздуха над мениском р=(0gH равны, то есть

[pic], (1)

где d – диаметр капилляра, H – разность уровней в коленах манометра, (0 –

плотность манометрической жидкости. Величина [pic] является постоянной для

данной установки, поэтому, вычислив её, можно найти ( по формуле

(=K(H. (2)

КРАТКАЯ ТЕОРИЯ

Молекулы жидкости взаимодействуют между собой силами притяжения и

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты