Ответы на вопросы к госу по МПФ

частоты с постоянной разностью фаз. Записывают условия максимумов [pic]и

минимумов [pic].

Явление дифракции – отклонение от прямолинейного распространения, огибание

препятствий, характерно для любой волны, что можно продемонстрировать на

примере волн на воде.

В поперечности волн можно убедиться из опыта, разместив между приемником и

передатчиком решетки, при ее повороте на 900 прием прекращается.

21. Методика изучения вопроса о световых квантах (Внешний фотоэффект,

эффект Комптона,. Фотон). 22. Методика изучения вопроса о световых квантах

(законы фотоэффекта, двойственность свойств света).

В программе по физике для 11 летней школы один из разделов называется

«Квантовая физики». Этот раздел включает в себя два подраздела: «кванты

света» и «Атом и атомное ядро». Этот материал объединен вокруг стержневой

идеи – квантованности в микромире. На конкретных примерах иллюстрируется

роль эксперимента, как источника знаний. На примере корпускулярно волновой

двойственности свойств света а также частиц вещества раскрывается закон

единства и борьбы противоположностей.

Знакомят с историей развития квантовой физики.

В основе обоснования тезиса о квантовой природе света авторы программы

предлагают изучать явление фотоэффекта. На основе фотоэффекта вводится идея

о дискретности энергии излучения и поглощения кванта энергии:

[pic]

Введению понятию о квантовой природе света предшествует качественный анализ

трудностей электродинамики Максвелла при объяснении законов теплового

излучения. Оказалось, что теория Максвелла, объясняющая излучение

макроскопическими излучениями – антителами электромагнитной волны с большой

длиной волны, оказалась неспособной объяснить излучение коротких

электромагнитных волн микроскопическими излучателями (атомами и

молекулами).

Эту задачу решил Планк в 1900г. путем введения в физику принципиально новой

идеи: он предположил, что энергия атомов меняется отдельными порциями –

квантами. Причем, если собственная частота атома равна ню, то его энергия

изменяется лишь скачком на величину равную или кратную [pic]. Необходимо

заметить, что о квантовании самого излучения Планк ничего не говорил. Идея

о том, что излучение состоит из отдельных порций – квантов излучений

(названных в последствии фотонами) принадлежит Эйнштейну, который пришел к

этой идее в 1905 году, в результате анализа статистических свойств

излучения, а затем применил ее к объяснению ряда явлений, в том числе и к

фотоэффекту.

Учитель ставит проблему: существовали экспериментальные основания для

утверждения дискретности излучения. Ответ- да, такими основаниями служат

явления фотоэффекта. Рассказывает историю открытия фотоэффекта и роль

Столетова в исследовании законов фотоэффекта.

Вырывание электронов с поверхности металла под действием света –

фотоэффект.

Для исследования законов фотоэффекта использовалась установка: стеклянный

сосуд с 2 электродами. С помощью этой схемы использовались ВАХ.

1-й закон фотоэффекта: Фототок насыщения прямо пропорционален интенсивности

излучения, падающего на катод.

Скорость фотоэлектронов можно найти, используя закон сохранения энергии:

[pic], eUз – работа э.п. [pic].

2-й закон фотоэффекта: максимальная кинетическая энергия фотоэлектронов

линейно возрастает с частотой света и не зависит от интенсивности света.

3-й закон фотоэффекта: Для каждого вещества существует красная граница

фотоэффекта, т.е. наименьшая частота при которой еще возможен фотоэффект.

При всех частотах меньших это минимальной фотоэффект не произойдет ни при

какой интенсивности волны, падающей на катод.

Для получения количественной зависимости законов для фотоэлектронов, надо

ввести понятие о работе выхода электронов. Это можно сделать качественно на

уровне классической теории, пояснившей что при выходе электрона из металла

в нем образуется индуцированный положительный заряд, который притягивает

электрон к металлу.

Электрон может выйти из металла и удалиться от его поверхности на малые

расстояния: над металлом создается тонкий отрицательно заряженный

электронный слой, который вместе с положительными ионами поверхности

металла образуют своеобразный заряженный конденсатор, поле которого

препятствует выходу новых электронов, поэтому для вырывания электронов из

металла нужно совершить работу против сил, препятствующих выходу электронов

из поверхности металла.

Минимальная дополнительная энергия, которую надо сообщить электрону для его

удаления с поверхности тела в вакууме называется работой выхода.

После ознакомления учащихся с понятиями работы выхода электрона, на основе

закона сохранения энергии для элементарного акта фотоэффекта вводят формулу

Эйнштейна в виде: [pic].

Основываясь на этом уравнении объясняют все три закона фотоэффекта.

Число фотоэлектронов должно быть пропорционально числу квантов, а не равно,

потому что часть квантов поглощается кристаллической решеткой и их энергия

переходит во внутреннюю энергию металла.

Второй закон очевиден, так как формула Эйнштейна определяет максимальную

энергию электронов, вылетающих с поверхности катода. Электроны, вырываемые

из внутри металла могут потерять часть энергии и скорость окажется меньше

максимальной.

Третий закон выводится так же из формулы Эйнштейна, т.к. кинетическая

энергия не может быть меньше нуля, то фотоэффект могут вызывать лишь

кванты, энергия которых не меньше работы выхода, т.е. [pic].

Фотон является ультрарелятивисткой частицей, имеющей в вакууме скорость

света. Энергию фотона определяет: [pic] или [pic].

Помимо энергии и массы, фотон обладает и импульсом. Часто при изучении

этого вопроса записывают выражение для импульса фотона: [pic].

Более общим является вывод формулы для импульса фотона:

[pic].

Важно подчеркнуть, что импульс фотона является векторной величиной.

Направление импульса совпадает с направлением распространения света. Это

требует дополнительных объяснений. Так, например, импульс можно записать

следующим образом: [pic] , k-волновое число - число длин волн

укладывающихся на 2пи единиц длины.

Вводят следующие обозначения: [pic] , [pic] Постоянная, введенная Дираком,

основоположником квантовой механики. Т.о. фотон, подобно любой движущейся

частице обладает тремя корпускулярными характеристиками: энергией, массой и

импульсом. Все эти характеристики связаны с волновой характеристикой света

- его частотой. В этом находит свое выражение корпускулярно-волновая

двойственность свойств света.

23. Методика изучения строения атома в курсе физики средней школы (явление

радиоактивности, опыт Резерфорда).

Изучение строения атома начинается обычно с опыта Резерфорда и планетарной

модели атома. Однако, учащиеся к этому времени еще не знают ничего о

радиоактивности, поэтому в начале необходимо ознакомить школьников с видами

радиоактивного излучения.

Начать изучение строения атома с явления радиоактивности целесообразно,

т.к. радиоактивность - явление свидетельствующее о сложной структуре атома

и дающее мощный толчок развитию атомной физики.

Рассказывая о радиоактивности, учащиеся знакомятся с основными видами

радиоактивных излучений: [pic].

Более подробно останавливаются на свойствах альфа частиц. Альфа частица

представляет собой дважды ионизированные атомы гелия, их масса 4,002

а.е.м., или 6,6 10-27кг., т.е. в 8 тысяч раз больше массы электрона, заряд

альфа частицы равен 2 зарядам электрона. Скорость при радиоактивном распаде

достигает 2 107м/с.

Желательно предложить школьникам оценить кинетическую энергию альфа частицы

и сравнить ее со средней кинетической энергией молекул при нормальной

температуре. (больше в 108 раз).

Именно поэтому альфа частицы представляют собой естественные "снаряды" для

изучения структуры вещества.

Первая модель атома предложенная Томсоном в 1903 году имеет сейчас лишь

историческое значение. От нее логически переходят к опыту Резерфорда.

При описании результатов опыта Резерфорда главное внимание надо уделять

тому факту, что некоторое (малое) количество альфа частиц отклоняется от

большинства на угол до 1800. Этот результат имел решающее значение для

создания планетарной модели атома. Т.к. он оказался несовместимым с моделью

Томсона: положительный заряд, распределенный по всему объему атома не может

обеспечить силу необходимую для отклонения альфа частиц на такие большие

углы.

Желательно дать учащимся почувствовать как анализ результатов опыта служит

основой для высказывания определенных теоретических предсказаний о

структуре атома.

С этой целью можно решить, например, задачу "Сколько атомов встретит на

своем пути альфа частица, пролетая через тонкую фольгу толщиной 1 мкм".

Т.к. в этом случае интерес представляет порядок величины, а не ее точное

значение, то ограничиваются диаметром атома 10-10м, поэтому число атомов,

будет порядка 104. Т.к. атомы золота расположены близко друг к другу (10-

10м), т.е. доказано, что многие альфа частицы пролетят не взаимодействуя с

ними, следовательно, атом не является сплошным, модель Томсона не

подтверждается.

Результаты опыта Резерфорда позволили сделать вывод, что масса ядра

действительно велика и определяется приблизительно радиусом ядра.

Чтобы альфа частица могла повернуть назад, ее скорость у поверхности

положительно заряженной сферы должна стать равной нулю, поэтому полная

энергия равна потенциальной энергии взаимодействия, т.е. [pic]. Это

уравнение позволило оценить величину положительного заряда атома при

условии, что R=10-8см.

Расчет дает следующий результат Q/e=400000, т.е. заряд ядра в 400000 раз

больше заряда электрона.

Важно отметить, что положительный заряд атома был впервые измерен именно в

опытах по рассеянию альфа частиц. Английский физик Чедвик показал, что для

ряда элементов он приблизительно равен половине атомной массы. Отсюда

возникает гипотеза, что величина заряда ядра равна порядковому номеру

элемента в системе Менделеева, что в 1918 году было подтверждено Мозли,

который с большой точностью измерил заряд ядра для многих атомов.

При описании планетарной модели атома надо обратить внимание на

несовместимость такой модели с законами механики и электродинамики. Во

первых длительное движение электронов по замкнутой траектории вокруг ядра с

точки зрения электродинамики Максвелла невозможно, т.к. из-за потери

энергии на излучение электрон тормозится и должен скоро упасть на ядро,

однако атом исключительно устойчив. Во вторых в следствии непрерывной

потери энергии и значения непрерывного изменения скорости электрона атом

должен излучать непрерывный спектр. Однако атомы излучают линейчатые

спектры. В третьих атом излучает свет не все время, а лишь при определенных

условиях (прохождение через газы, нагретые до высокой температуры).

24. Методика изучения строения атома в курсе средней школы. (Квантовые

постулаты Бора, линейчатые спектры, волновые свойства частиц).

25. Методика изучения главы: "Физика атомного ядра" (Состав ядра атома,

энергетические связи атомных ядер, ядерные силы).

В этой главе учащиеся знакомятся с составом ядра, с взаимным превращением

атомных ядер, знакомятся с ядерными силами и с физическими свойствами

ядерной энергетики. Необходимо отметить, что английский ученый Чедвик в

1932 году открыл нейтрон, который был предсказан Резерфордом. Это дало

возможность ученым Иваненко и Гейзенбергу предложить протонно-нейтронную

модель ядра. Согласно этой модели ядро атома состоит из p и n. Массовое

число [A=Z+N], Z - количество протонов, N - количество нейтронов [pic].

При знакомстве с p-n моделью ядра необходимо решать задачи по нахождению

числа p и n, входящих в состав ядра.

Необходимо ознакомить учащихся со свойствами частиц, входящих в состав

ядра. О протоне: mp=1,007276 а.е.м., ep=1,6 10-19Кл, частица стабильная, не

смотря на это при получении ротон распадается: [pic].

О нейтроне: mn=1,008665 а.е.м., en=0, частица квазистабильная, время жизни

15 минут. При распаде [pic].

Говоря о совойствах протона и нейтрона необходимо ввести современные

представления о существовании лишь одной ядерной частицы - нуклона,

находящейся в разных зарядовых состояниях: нейтральном (n), заряженном (p),

что дает возможность объяснять механизмы p-распада.

Интересным представляется вопрос об оценке плотности ядерного вещества.

Предположим, что ядро состоит из частиц примерно одинакового размера и

расположенных компактно. Если в ядре A - нуклонов, то V ядра - [pic]R0 -

эффективный радиус. R0=(1,4-1,5)10-15м, тогда плотность [pic]..

Плотность ядер веществ всех ядер одинакова.

Энергия связи атомных ядер. Ядерные силы.

Энергия связи, удельная энергия связи - это новые понятия для учащихся,

поэтому им необходимо уделять большое внимание. Для того, что бы учащиеся

лучше поняли вопрос о энергии связи, необходимо повторить следующие

моменты:

потенциальная энергия - это энергия взаимодействия тел (земля - тело,

электрон - ядро).

Существует устойчивая система обладающая энергией связи.

Дают определение: Под энергией связи ядра понимают ту энергию, которая

необходима для полного расщепления ядра на отдельные нуклоны.

На основе закона сохранения энергии можно утверждать, что энергия связи

равна той энергии, которая выделяется при образовании ядра из отдельных

частиц. Затем выдвигается вопрос: "Как найти энергию связи?"

Обращают внимание, что очное измерение масс ядер показывает, что масса

покоя ядра всегда меньше суммы масс покоя слагающих его протонов и

нейтронов. [Mя

Существует дефект масс:[pic].

Уменьшение массы при образовании ядра из нуклонов означает, что при этом

уменьшается энергия этой системы нуклонов на величину энергии связи. [pic].

Необходимо предложить учащимся решать ряд задач по нахождению энергии связи

ядер, но для этого необходимо уточнить, что дефекту масс в 1а.е.м.

соответствует энергия 931МэВ.

После этого необходимо предложить учащимся рассчитать энергию связи

некоторых элементов и убедиться, что в среднем она равна 8 МэВ/кулон,

например для Не, энергия вязи 27МэВ. Учитывая, что в ядре входят 4 нуклона

найдем удельную энергию связи: 27/4=6,8 МэВ/нуклон. Необходимо это сделать

для нескольких элементов, что позволит построить график зависимости

удельной энергии связи от массового числа.

Заметим, что элементы, находящиеся в средней части периодической системы

А=50..60, т.е. железо и близкие к нему по порядковому номеру элементы,

имеют максимальную удельную энергию связи 9МэВ/нуклон. Поэтому ядра всех

этих элементов наиболее устойчивы.

Затем переходят к ядерным силам. Т.к. ядро весьма устойчиво, то p и n

должны удерживаться внутри очень большими силами. Желательно показать

учащимся те факты из которых вытекает существование ядерных сил.

План раскрытия материала:

Т.к. размер ядра очень мал, а кулон сила возрастающая пропорционально

[pic], то электростатическая сила отталкивания между протонами в ядре

велика, между тем ядра атомов устойчивы, это заставляет предположить, что

между нуклонами в ядре действуют другие силы - ядерные, которые способны

преодолеть силы нуклонового отталкивания между протонами.

Ядерные силы зарядонезависимы, т.е. взаимодействие p с n, n c n, p c p

примерно одинаковы.

Ядерные силы короткодействующие. Т.е. действуют на малых расстояниях

порядка 1,5 - 2,2 10-15.

Из того факта, что удельная энергия связи не возрастает в ядрах

пропорционально числу нуклонов А, следует, что для ядерных сил характерно

насыщение, т.е. каждый нуклон взаимодействует лишь с ближайшими соседями, а

не со всеми А-1 нуклонами, находящимися в ядре.

26. Методика изучения главы "Физические основы атомной энергетики"

Основным средством получения радиоактивных изотопов являются ядерные

реакции.

Ядерными реакциями называются изменение атомных ядер при взаимодействии их

с элементарными частицами или друг с другом.

Ядерные реакции обычно протекают в два этапа:

частица "снаряд" проникает в ядро - "мишень" в результате чего образуется

составное ядро, находящееся в возбужденном состоянии.

Ядро переходит в менее возбужденное состояние и испускает при этом частицы.

Первая ядерная реакция на быстрых протонах была осуществлена в 1932 году.

[pic]

После фотографирования этой реакции в камере Вильсона была найдена скорость

альфа частиц (ядра атомов гелия). Зная скорость можно вычислить энергию

этих частиц. Она оказалась эквивалентна массе, вычисленной по формуле

Эйнштейна.

Затем изучают цепную ядерную реакцию: [pic], [pic], [pic], [pic].

Уран 239 (92) является бета-радиокатализатором и в результате выброса бета

частиц (быстрых электронов) Np 239 (93) является бета радиоактивным.

[pic].

Первый атомный реактор был построен в США в 1942 году группой ученых под

руководством Ферми.

Термоядерные реакции - это реакции слияния легких ядер при высокой

температуре.

[pic]

В таких реакциях выделяется энергия в 17,6 МэВ, что составляет примерно

3,5МэВ на нуклон.

-----------------------

t

T

T1

A

B

C

D

E

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



Реклама
В соцсетях
скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты