|состоит из отдельных частей (объектов), выполняющих определенные функции и называемых|
|элементами цепи. Основными элементами цепи являются источники и приемники |
|электрической энергии (сигналов). Электротехнические устройства, производящие |
|электрическую энергию, называются генераторами или источниками электрической энергии,|
|а устройства, потребляющие ее – приемниками (потребителями) электрической энергии. |
|У каждого элемента цепи можно выделить определенное число зажимов (полюсов), с |
|помощью которых он соединяется с другими элементами. Различают двух –и многополюсные |
|элементы. Двухполюсники имеют два зажима. К ним относятся источники энергии (за |
|исключением управляемых и многофазных), резисторы, катушки индуктивности, |
|конденсаторы. Многополюсные элементы – это, например, триоды, трансформаторы, |
|усилители и т.д. |
|Все элементы электрической цепи условно можно разделить на активные и пассивные. |
|Активным называется элемент, содержащий в своей структуре источник электрической |
|энергии. К пассивным относятся элементы, в которых рассеивается (резисторы) или |
|накапливается (катушка индуктивности и конденсаторы) энергия. К основным |
|характеристикам элементов цепи относятся их вольт-амперные, вебер-амперные и |
|кулон-вольтные характеристики, описываемые дифференциальными или (и) алгебраическими |
|уравнениями. Если элементы описываются линейными дифференциальными или |
|алгебраическими уравнениями, то они называются линейными, в противном случае они |
|относятся к классу нелинейных. Строго говоря, все элементы являются нелинейными. |
|Возможность рассмотрения их как линейных, что существенно упрощает математическое |
|описание и анализ процессов, определяется границами изменения характеризующих их |
|переменных и их частот. Коэффициенты, связывающие переменные, их производные и |
|интегралы в этих уравнениях, называются параметрами элемента. |
|Если параметры элемента не являются функциями пространственных координат, |
|определяющих его геометрические размеры, то он называется элементом с |
|сосредоточенными параметрами. Если элемент описывается уравнениями, в которые входят |
|пространственные переменные, то он относится к классу элементов с распределенными |
|параметрами. Классическим примером последних является линия передачи электроэнергии |
|(длинная линия). |
|Цепи, содержащие только линейные элементы, называются линейными. Наличие в схеме хотя|
|бы одного нелинейного элемента относит ее к классу нелинейных. |
|Рассмотрим пассивные элементы цепи, их основные характеристики и параметры. |
|1. Резистивный элемент (резистор) |
|Условное графическое изображение резистора приведено на рис. 1,а. Резистор – это |
|пассивный элемент, характеризующийся резистивным сопротивлением. Последнее |
|определяется геометрическими размерами тела и свойствами материала: удельным |
|сопротивлением ? (ОмЧ м) или обратной величиной – удельной проводимостью [pic](См/м).|
| |
|В простейшем случае проводника длиной [pic]и сечением S его сопротивление |
|определяется выражением |
|[pic]. |
|В общем случае определение сопротивления связано с расчетом поля в проводящей среде, |
|разделяющей два электрода. |
|Основной характеристикой резистивного элемента является зависимость [pic](или [pic]),|
|называемая вольт-амперной характеристикой (ВАХ). Если зависимость [pic]представляет |
|собой прямую линию, проходящую через начало координат (см.рис. 1,б), то резистор |
|называется линейным и описывается соотношением |
|[pic] |
|или |
|[pic], |
|где [pic]- проводимость. При этом R=const. |
|Нелинейный резистивный элемент, ВАХ которого нелинейна (рис. 1,б), как будет показано|
|в блоке лекций, посвященных нелинейным цепям, характеризуется несколькими |
|параметрами. В частности безынерционному резистору ставятся в соответствие |
|статическое [pic]и дифференциальное [pic]сопротивления. |
|2. Индуктивный элемент (катушка индуктивности) |
|Условное графическое изображение катушки индуктивности приведено на рис. 2,а. Катушка|
|– это пассивный элемент, характеризующийся индуктивностью. Для расчета индуктивности |
|катушки необходимо рассчитать созданное ею магнитное поле. |
|[pic] |
|Индуктивность определяется отношением потокосцепления к току, протекающему по виткам |
|катушки, |
|[pic]. |
|В свою очередь потокосцепление равно сумме произведений потока, пронизывающего витки,|
|на число этих витков [pic], где [pic]. |
|Основной характеристикой катушки индуктивности является зависимость [pic], называемая|
|вебер-амперной характеристикой. Для линейных катушек индуктивности зависимость |
|[pic]представляет собой прямую линию, проходящую через начало координат (см. рис. |
|2,б); при этом |
|[pic]. |
|Нелинейные свойства катушки индуктивности (см. кривую [pic]на рис. 2,б) определяет |
|наличие у нее сердечника из ферромагнитного материала, для которого зависимость |
|[pic]магнитной индукции от напряженности поля нелинейна. Без учета явления магнитного|
|гистерезиса нелинейная катушка характеризуется статической [pic]и дифференциальной |
|[pic]индуктивностями. |
|3. Емкостный элемент (конденсатор) |
|Условное графическое изображение конденсатора приведено на рис. 3,а. |
|[pic] |
|Конденсатор – это пассивный элемент, характеризующийся емкостью. Для расчета |
|последней необходимо рассчитать электрическое поле в конденсаторе. Емкость |
|определяется отношением заряда q на обкладках конденсатора к напряжению u между ними |
|[pic] |
|и зависит от геометрии обкладок и свойств диэлектрика, находящегося между ними. |
|Большинство диэлектриков, используемых на практике, линейны, т.е. у них относительная|
|диэлектрическая проницаемость[pic] =const. В этом случае зависимость |
|[pic]представляет собой прямую линию, проходящую через начало координат, (см. рис. |
|3,б) и |
|[pic]. |
|У нелинейных диэлектриков (сегнетоэлектриков) диэлектрическая проницаемость является |
|функцией напряженности поля, что обусловливает нелинейность зависимости [pic](рис. |
|3,б). В этом случае без учета явления электрического гистерезиса нелинейный |
|конденсатор характеризуется статической [pic]и дифференциальной [pic]емкостями. |
| |
|Схемы замещения источников электрической энергии |
|Свойства источника электрической энергии описываются ВАХ [pic], называемой внешней |
|характеристикой источника. Далее в этом разделе для упрощения анализа и |
|математического описания будут рассматриваться источники постоянного напряжения |
|(тока). Однако все полученные при этом закономерности, понятия и эквивалентные схемы |
|в полной мере распространяются на источники переменного тока. ВАХ источника может |
|быть определена экспериментально на основе схемы, представленной на рис. 4,а. Здесь |
|вольтметр V измеряет напряжение на зажимах 1-2 источника И, а амперметр А – |
|потребляемый от него ток I, величина которого может изменяться с помощью переменного |
|нагрузочного резистора (реостата) RН. |
|[pic] |
|В общем случае ВАХ источника является нелинейной (кривая 1 на рис. 4,б). Она имеет |
|две характерные точки, которые соответствуют: |
|а – режиму холостого хода [pic]; |
|б – режиму короткого замыкания [pic]. |
|Для большинства источников режим короткого замыкания (иногда холостого хода) является|
|недопустимым. Токи и напряжения источника обычно могут изменяться в определенных |
|пределах, ограниченных сверху значениями, соответствующими номинальному режиму |
|(режиму, при котором изготовитель гарантирует наилучшие условия его эксплуатации в |
|отношении экономичности и долговечности срока службы). Это позволяет в ряде случаев |
|для упрощения расчетов аппроксимировать нелинейную ВАХ на рабочем участке m-n (см. |
|рис. 4,б) прямой, положение которой определяется рабочими интервалами изменения |
|напряжения и тока. Следует отметить, что многие источники (гальванические элементы, |
|аккумуляторы) имеют линейные ВАХ. |
|Прямая 2 на рис. 4,б описывается линейным уравнением |
|[pic], |
|(1) |
| |
|где [pic]- напряжение на зажимах источника при отключенной нагрузке (разомкнутом |
|ключе К в схеме на рис. 4,а); [pic]- внутреннее сопротивление источника. |
|Уравнение (1) позволяет составить последовательную схему замещения источника (см. |
|рис. 5,а). На этой схеме символом Е обозначен элемент, называемый идеальным |
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10